CM-Series
External-Mount
End Block

The CM is our smallest external-mount end block and is an excellent choice for smaller systems or R&D systems.

There are two designs: one for a 125 mm ID and another for an 80 mm ID target.

External end blocks have a wider substrate coverage than internal models.

To match any system, drive shaft length is customizable, and drive motors can have 360° positioning around the main housing.

Magnet bar adjustments—to any angle—are made externally. All utilities are external and remain attached during target changes. The water seal cartridge is easily accessed for quick replacement.

Use in new systems or upgrade from planar systems.

SCI can provide coater integration support.

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power V/A</td>
<td>20 kW DC or MFAC</td>
</tr>
<tr>
<td>Maximum Target Length</td>
<td>1000 mm</td>
</tr>
<tr>
<td>Maintenance</td>
<td>1 hr./yr. average 3 hrs. for a rebuild</td>
</tr>
</tbody>
</table>
CM125 (for 125 mm ID targets)

Cantilever capability

Metric: \(\frac{XY}{2} + 16X^2 \leq 39 \)

Imperial: \(\frac{XY}{2} + 0.9X^2 \leq 3,400 \)

\(X \) = Backing tube length (meters or inches)
\(Y \) = Weight of target (kg or lb only)

Notes: The formula assumes a stainless steel backing tube; other materials may not qualify. The formula must be adjusted for long drive shafts or if a RAM-Bar™ will be used.
CM80 (for 80 mm ID targets)

Cantilever capability

Metric: \(\frac{XY}{2} + 10X^2 \leq 19.5 \)

Imperial: \(\frac{XY}{2} + 0.33X^2 \leq 1,700 \)

* X = Backing tube length (meters or inches)
* Y = Weight of target (kg or lb only)

Notes: The formula assumes a stainless steel backing tube; other materials may not qualify. The formula must be adjusted for long drive shafts.

Dimensions in mm